

Properties	Test methods	Units	Values	
Productname	-	-	PA 6.6	
Color	-	-	nature, black	
Average molar mass (average molecular veight)	-	10 ⁶ g / mol		
Density	ISO 1183-1	g / cm³	1,140	
Nater apsorption		9,	_,	
after 24/96 h immersion in water of	100.00		40.476	
23°C (1) • after 24/96 h immersion in water of	ISO 62	mg	40 / 76	
23°C (1)	ISO 62	%	0,6 / 1,13	
at saturation in air of 23°C / 50% RH	-	%	2,4	
at saturation in water of 23°C	-	%	8	
HERMAL PROPERTIES (2)	100 1100 110			
Melting temperature (DSC, 10°C/min)	ISO 11357-1/-3	°C	260	
Dynamic glass transition temperature +	ISO 3146	°C	72	
Dynamic glass transition temperature ++	ISO 3146	°C	5	
hermal conductivity Lambda λ at 23°C	-	W / (K · m)	0,280	
oefficient of linear thermal expansion		11 10	00 105	
average value between 23 and 60°C	-	m / (m · K)	80 x 10 ⁻⁶	
average value between 23 and 100°C	-	m / (m · K)	95 x 10 ⁻⁶	
average value between 23 and 150°C	-	m / (m · K)		
emperature of deflection under load				
• method A: 1,8 MPa	ISO 75-1/-2	°C	85	
icat-Erweichungstemperatur - VST/B50	ISO 306	°C		
laximal allowable service temperature in				
for short periods (3)	-	°C	180	
• continously: for 5.000 / 20.000 h (4)	-	°C	95 / 80	
inimal service temperature (5)	-	°C	-30	
lammability (6)				
Oxygen-Index	ISO 4589-1/-2	%	26	
 according to UL 94 (3 / 6 mm thickness) 	-		HB / V-2	
pecific heat capacity	-	J / (g · K)	1,7	
MECHANICAL PROPERTIES AT 23°C (7)	430			
ension test (8)				
• tensile stress at yield / tensile stress at break (9) +	ISO 527-1/-2	N / mm²	90 / -	
• tensile stress at yield / tensile stress at break (9) ++	ISO 527-1/-2	N / mm²	55 / -	
• tensile strength (9) +	ISO 527-1/-2	N / mm²	93	
• tensile strain at yield (9) +	ISO 527-1/-2	%	5	
tensile strain at break / elongation at break (9) +	ISO 527-1/-2	%	50 / -	
tensile strain at break / elongation at break (9) ++	ISO 527-1/-2	%	> 100 / -	
tensile modulus of elasticity (10) +	ISO 527-1/-2	N / mm²	3550	
tensile modulus of elasticity (10) + tensile modulus of elasticity (10) ++	ISO 527-1/-2	N / mm²	1700	
	150 321-1/-2	IN / IIIIII	1700	
• compressive stress at 1/2/5 % nominal	ISO 604	N / mm²	25 / 49 / 92	
strain (12) +		,	,	
reep test in tension (8)				
stress to produce 1% strain	ISO 899-1	N / mm²	20	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000)	ISO 899-1	N / mm²	8,00	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) harpy impact strenght - Unnotched (12)	ISO 899-1 ISO 179-1/1eU	N / mm² kJ / m²	8,00 no break	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) narpy impact strenght - Unnotched (12)	ISO 899-1	N / mm²	8,00	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) harpy impact strenght - Unnotched (12) harpy impact strenght - Notched harpy impact strength (15° V-notched,	ISO 899-1 ISO 179-1/1eU	N / mm² kJ / m²	8,00 no break	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) harpy impact strenght - Unnotched (12) harpy impact strenght - Notched harpy impact strength (15° V-notched, oth-sided)	ISO 899-1 ISO 179-1/1eU ISO 179-1/1eA	N / mm² kJ / m² kJ / m²	8,00 no break	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) Charpy impact strenght - Unnotched (12) Charpy impact strength - Notched Charpy impact strength (15° V-notched, ooth-sided) zood impact strength - Notched +	ISO 899-1 ISO 179-1/1eU ISO 179-1/1eA ISO 11542-2	N / mm² kJ / m² kJ / m² kJ / m²	8,00 no break 4,5	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) charpy impact strenght - Unnotched (12) charpy impact strenght - Notched charpy impact strength (15° V-notched, oth-sided) zod impact strength - Notched + zod impact strength - Notched ++	ISO 899-1 ISO 179-1/1eU ISO 179-1/1eA ISO 11542-2 180/2A	N / mm² kJ / m² kJ / m² kJ / m² kJ / m²	8,00 no break 4,5	
• stress to produce 1% strain	ISO 899-1 ISO 179-1/1eU ISO 179-1/1eA ISO 11542-2 180/2A 180/2A	N / mm² kJ / m²	8,00 no break 4,5 4,5 11,00	
• stress to produce 1% strain stress to produce 1% strain (σ 1/1000) charpy impact strenght - Unnotched (12) charpy impact strenght - Notched charpy impact strength (15° V-notched, both-sided) zod impact strength - Notched + zod impact strength - Notched ++ zod impact strength - Notched ++	ISO 899-1 ISO 179-1/1eU ISO 179-1/1eA ISO 11542-2 180/2A 180/2A 2039-1	N / mm ² kJ / m ²	8,00 no break 4,5 4,5 11,00	

Sliding wear method O (14)

μ/km

μ/km

14

Electric strength (15) ++ IEC 6 Volume resistivity + IEC 7 Volume resistivity ++ IEC 8 Surface resistivity ++ IEC 9 Relative permittivity \$\varepsilon\$ • at 100 Hz ++ IEC 9 • at 100 Hz ++ IEC 9 • at 1 MHz ++ IEC 9 Dielectric dissipation factor tan Delta \$\varepsilon\$ • at 100 Hz ++ IEC 9 • at 100 Hz ++ IEC 9 at 100 Hz ++ IEC 9 • at 1 MHz ++ IEC 9	60243-1 kV 60093 Ω 60093 Ω 60093 60093 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250	/ mm 1 · cm > · cm > 0	27 18,00 > 10 ¹⁴ > 10 ¹² > 10 ¹³ > 10 ¹² 3,80 7,40 3,3 3,80 0,0130 0,0130 0,02 0,0600 600 600
Electric strength (15) ++ IEC 6 Volume resistivity + IEC 7 Volume resistivity ++ IEC 8 Surface resistivity ++ IEC 9 Relative permittivity \$\varepsilon\$ • at 100 Hz ++ IEC 9 • at 100 Hz ++ IEC 9 • at 1 MHz ++ IEC 9 Dielectric dissipation factor tan Delta 6 • at 100 Hz ++ IEC 9 • at 100 Hz ++ IEC 9 in this permittivity 1 IEC 9 • at 1 MHz ++ IEC 9 in this permittivity 2 IEC 9 • at 1 MHz ++ IEC	60243-1 kV 60093 Ω 60093 Ω 60093 60093 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250	/ mm 1 · cm > · cm > 0 \ cm > 0 \ 0 \ - \ 3 \ - \ 7 \ - \ 3 \ - \ 0,	> 10 ¹⁴ > 10 ¹² > 10 ¹³ > 10 ¹² 3,80 7,40 3,3 3,80 0,0130 0,0130 0,02 0,0600 600
Volume resistivity + IEC Volume resistivity +	60093 Ω 60093 Ω 60093 60093 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250	- 3 - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0,	> 10 ¹⁴ > 10 ¹² > 10 ¹³ > 10 ¹² 3,80 7,40 3,3 3,80 0,0130 0,0130 0,02 0,0600 600
Volume resistivity ++ IEC Surface resistivity + IEC Surface resistivity ++ IEC Relative permittivity E • at 100 Hz + IEC • at 1 MHz ++ IEC • at 1 MHz ++ IEC Dielectric dissipation factor tan Delta 5 • at 100 Hz + IEC • at 1 MHz ++ IEC Comparative tracking index (CTI) +	60093 Ω 60093 60093 60250 60250 60250 60250 60250 60250 60250 60250 60250 60250	- Cm > Cm	> 10 ¹² > 10 ¹³ > 10 ¹² 3,80 7,40 3,3 3,80 0,0130 0,0130 0,02 0,0600 600
Surface resistivity + IEC of Surface resistivity E • at 100 Hz + IEC of Surface resistivity + IEC of Surface resistivity IEC of	60093 60093 60250 60250 60250 60250 60250 60250 60250 60250 60250	Ω > Ω > Ω > Ω > Ω > Ω > Ω > Ω > Ω > Ω >	> 10 ¹³ > 10 ¹² 3,80 7,40 3,3 3,80 0,0130 0,1300 0,02 0,0600 600
Surface resistivity ++ IEC Comparative tracking index (CTI) + IEC COMPARATIVE Tracking index (CT	60093 60250 60250 60250 60250 60250 60250 60250 60250 60250	Ω > - 3 - 7 - 3 - 0, - 0, - 0, - 0, - 0, - 0, - 0, - 0,	3,80 7,40 3,3 3,80 0,0130 0,1300 0,02 0,0600 600
Relative permittivity ε • at 100 Hz ++ IEC of the color of t	60250 60250 60250 60250 60250 60250 60250 60250 60112	- 3 - 7 - 3 - 0, - 0, - 0,	3,80 7,40 3,3 3,80 0,0130 0,1300 0,02 0,0600 600
• at 100 Hz + IEC • at 100 Hz ++ IEC • at 1 MHz + IEC • at 1 MHz ++ IEC • at 1 MHz ++ IEC Dielectric dissipation factor tan Delta 6 • at 100 Hz + IEC • at 1 MHz ++ IEC Comparative tracking index (CTI) + IEC • at 100 Hz ++ IEC • at 1 MHz ++ IEC • a	60250 60250 60250 60250 60250 60250 60250 60112	- 7, - 3, - 0, - 0, - 0,	7,40 3,3 3,80 0,0130 0,1300 0,02 0,0600 600
• at 100 Hz ++ IEC • at 1 MHz ++ IEC • at 1 MHz ++ IEC • at 1 MHz ++ IEC Dielectric dissipation factor tan Delta 5 • at 100 Hz + IEC • at 1 00 Hz ++ IEC • at 1 MHz ++ IEC • at 1 MHz ++ IEC Comparative tracking index (CTI) + IEC IEC IEC Comparative tracking index (CTI) + IEC I	60250 60250 60250 60250 60250 60250 60250 60112	- 7, - 3, - 0, - 0, - 0,	7,40 3,3 3,80 0,0130 0,1300 0,02 0,0600 600
• at 1 MHz + IEC • • at 1 MHz ++ IEC • Dielectric dissipation factor tan Delta 5 • at 100 Hz + IEC • • at 1 00 Hz ++ IEC • • at 1 MHz ++ IEC • • at 1 MHz ++ IEC • Comparative tracking index (CTI) + IEC •	60250 60250 60250 60250 60250 60250 60112	- 0, - 0, - 0, - 0,	3,3 3,80 0,0130 0,1300 0,02 0,0600 600
• at 1 MHz ++ IEC C Dielectric dissipation factor tan Delta 5 • at 100 Hz + IEC C • at 100 Hz ++ IEC C • at 1 MHz ++ IEC C • at 1 MHz ++ IEC C Comparative tracking index (CTI) + IEC C	60250 60250 60250 60250 60250 60112	- 0, - 0, - 0, - 0, - 0,	3,80 0,0130 0,1300 0,02 0,0600 600
Dielectric dissipation factor tan Delta 6 • at 100 Hz + IEC 0 • at 100 Hz ++ IEC 0 • at 1 MHz + IEC 0 • at 1 MHz ++ IEC 0 Comparative tracking index (CTI) + IEC 0	60250 60250 60250 60250 60112	- 0,/ - 0, - 0, - 0,/	0,0130 0,1300 0,02 0,0600 600
• at 100 Hz + IEC • at 100 Hz + IEC • at 1 MHz + IEC • IE	60250 60250 60250 60112	- 0, - 0, - 0,	0,1300 0,02 0,0600 600
• at 100 Hz ++ IEC • at 1 MHz + IEC • at 1 MHz + IEC • Comparative tracking index (CTI) + IEC •	60250 60250 60250 60112	- 0, - 0, - 0,	0,1300 0,02 0,0600 600
• at 1 MHz + IEC • at 1 MHz ++ IEC Comparative tracking index (CTI) + IEC	60250 60250 60112	- C - 0,	0,02 0,0600 600
• at 1 MHz ++ IEC Comparative tracking index (CTI) + IEC	60250 60112	- 0,	0,0600 600
Comparative tracking index (CTI) + IEC	60112	- (600

Legend

- 1. Following the ISO 62 written procedures Ø 50 x 3 mm.
- 2. The values listed for properties are largely taken from the material sheets supplied by raw material suppliers and other publications.
- 3. The properties listed are all values for semi-crystalline materials, and not amorphous materials.
- 4. Valid for just a few hours of thermal stress for applications where there is little or no mechanical stress.
- 5. Quoted thermal stability over 5,000 / 20,000 hours. Beyond this period, the tensile strength decreases to around 50% of the initial value. As with all thermoplastics, the maximum permissible operating temperature is in many cases primarily dependent on the duration and magnitude of the mechanical stress which occurs during exposure to heat.
- 6. In view of the reduction in impact strength with decreasing temperature, the lower service temperature limit is in practice particularly determined by the magnitude of the impact stress applied to the material. The values listed here are based on adverse shock loads and should not be considered an absolute practical limit.
- 7. It should be noted that these values, which have been estimated from the material sheets provided by raw material suppliers, must under no circumstances be taken as a guide to behaviour or reaction when the material is subject to fire. There are no "UL Yellow Cards" for these semi-finished products.
- 8. The data given for dry material (+) are mostly average values of tests carried out on test specimens consisting of round bars Ø40 60 mm. Considering the very low water absorption of POM, PET and PC, the values for the mechanical and electrical properties of dry (+) and damp (++) specimens of these materials can be considered almost equal.
- 9. Test piece: Type 1 B
- 10. Test speed: 20 mm/min. (5 mm/min for PA6.6 + GF, POM-C + PTFE and PET TX)
- 11. Test speed: 1 mm/min.
- 12. Test specimen: cylinder (Ø 12 x 30mm)
- 13. Pendulum used: 15 J.
- 14. Measured on 10-mm thick test specimens
- 15. Electrode configuration: two cylinders Ø 25 / Ø 75 mm; in transformer oil according to IEC 296; measured on 1-mm thick natural specimens. It is important to know that the dielectric strength of black extruded material (PA6, PA6.6, POM and PET) can be up to 50% lower than that of natural-coloured material. A possible microporosity in the centre of POM semi-finished products also results in a significant reduction in dielectric strength. This table is intended to assist you in selecting materials. The values listed here are within the usual range of product properties. However, they are not guaranteed property values and should not be used as the sole basis for construction. It should be noted that PA6.6 + GF is a fibre-reinforced material which is therefore considered anisotropic (properties are different dependent upon whether the fibres are parallel or perpendicular to the extrusion direction)